. Form Approved
REPORT DOCUMENTATION PAGE QMB NO. 07040188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment reganding this burden estimatos or any other aspect of this collection
of tnformation, including suggestions for reducing this burden 1o Washington Headquarters Services, Dircctocate for information Operations and Reports, 1215 Jefferson Davis Highway .

Sufte 1204, Ari VA 22202.432,_and o the Office of and ork Reduction Project (O704-0168) Washington, DC 20508,
1" AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED
May 31, 2007 Final, August 1, 06 - April 30, 07
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Concepts and Methods of Helicopter Local Stability for Aggressive
Maneuvers of Short Duration from Response Data Points 'W911 NF - 05 - 1- 0523
& AUTHORGS)
G. H. Gaonkar
7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Florida Atlantic University REPORT NUMBER
777 Glades Road, Boca Raton, FL-33431
"5 SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 70. SPONSORING / MONITORING
AGENCY REPORT NUMBER
U. S Amy Research Office e
P.O. Box 12211
Research Triangle Park, NC 27709-2211 _
L‘qq lqoa-bG)”ll

11, SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless 30 designated by other documentation.

128 DISTRIBUTION 7 AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

v emmr—— & . o e S

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This STIR work presents an exploratory investigation of helicopter stability during unsteady maneuvers on the basis of the finite
time Lyapunov exponents (FTLE). These maneuvers represent short-duration dynamics that lasts long enough to stall the rotor but
not long enough to reach a steady state. They also represent aggressive operations at the extremes of the flight envelope that often
represent a design condition. The Floquet approach is not applicable because it requires a periodic orbit, nor is the
Lyapunov-exponent approach, which requires long-time response histories. (The Lyapunov exponent reduces to FILE under
asymptotic conditions and to the real part of the Floquet exponent for a periodic orbit.) Since these aggressive maneuvers represent
unsteady dynamics of short duration, the formulation exploits the largest FTLE to calculate the stability of the least stable mode
from experimentally or numerically generated response data. It involves constructing a pseudo-state space by the method of delays,
generating a series of Jacobian matrices, and then forming the product of these matrices to genetate an Oseledec matrix and its
eigenvalues. The ongoing research is still in a developmental stage; it represents the first attempt toward developing a framework
for treating the stability of aggressive, short-duration maneuvers.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Helicopter stability, aggressive short-duration maneuvers 14
16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20 LIMITATION OF ABSIRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
SN7 1-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

Enclosure 1




Concepts and Methods of Helicopter Local Stability for Aggressive
Maneuvers of Short Duration from Response Data Points

(STIR)

August 1, 2006 - April 30, 2007

Final Progress Report




Table of Contents

Contents ‘ Page
1. Foreword e e e e 1
2 Aggressive Maneuvers OO 2
3 Steady and Unsteady Conditions e 4
4. Background to FTLE e e 5
4 1. Generalized Floquet Approach U 6
5 FTLE Approach P 7
5 1 Pseudo-state Space P 7
5.2 Toward Computing FTLE - e e e 8
5 3. FTLE as a Stability Measure e 9
6 Conclusions S 11
7. Continuing Study T R

8. References e 12




1. Foreword

Relatively little is known about helicopter stability during high-load-factor maneuvers under
unsteady conditions (Refs. 1-3). These maneuvers represent short-dwation dynamics that
lasts long enough to stall the rotor but not long enough to reach a steady state. They also
represent operations at the extremes of the flight envelope where the peak loading_goes well
beyond the steady thrust limit, dynamic stall occurs and often a design condition is reached
(Refs. 2-4). (Routine transient maneuvers; which do not last long enough to stall the rotor as
well as steady turns, which can be treated on the basis of Floquet theory, are not addressed

here )

Presently, helicopter stability is computed from state-space models and from numerically or
experimentally generated 1esponses by a host of algorithms, ranging from the
moving-block analysis to sparse-time-domain technique to generalized fast-Floquet theory
(Refs. 5, 6). No matter how these algorithms are designated, it is Floquet theory that
underlies all of them (Refs 5, 6) Floguet theory is a linear stability theory, and it provides
asymptotic stability under periodic-response conditions. Aggressive maneuvers of short
dutation do not reach a steady state. What about stability on the basis of Lyapunov
exponents, which, after all, is a generalization of linear stability based on Floquet theory?
For example, the Lyapunov exponent reduces to the real part of the Floquet exponent for a
periodic orbit and provides a means of quantifying stability of steady-state response that need
not necessarily be periodic (e.g. quasi-periodic orbit, Refs. 1, 2, 7) The Lyapunov exponent,

however, requires averaging of response data over a long time Simply put, neither the




Lyapunov exponent approach nor the Floquet approach a fortiori provides a means of

treating stability of aggressive maneuvers of short duration

The task of treating stability of aggressive maneuvers of short duration moves into an
uncharted territory of nonlinear stability undei' unsteady conditionfs‘ The STIR work does just
that Specifically, it explores how the emerging finite-time Lyapunov exponents (FILE)
provide the key to determine stébility and thus to provide a ﬁ'arhework to calculate stability
(Refs. 2, 7-9) This work does not address chaos; specifically, it addresses how the largest
fILE can be exploited to quantify the stability margin of the least stable mode during such

mancuvers.

To help appreciate the relevance of the FTLE approach, this report begins with a passing
refetence to the RAH-66 Comanche helicopter lesson and to maneuvers under steady and
unsteady conditions Then it comes to FTLE as a stability measure for aggressive maneuvers
of shorAt-duration.‘ After presenting conclusions, it also mentions the continuing study of the
FTLE approach, including its application to a comprehensive set of numerically and
expetimentally generated data; such a continuing study should bring out the strengths and

weaknesses of this approach

2, Aggressive Maneuvers

The US Ammy has been emphasizing the development of air vehicles with increasingly
stringent maneuvering requirements for their combat missions such as scout-attack (Ref. 4).
These maneuvers are typically aggressive maneuvers, mostly of short duration, and often

they represent a design condition
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Fig 1 Helicopter Schematic in a Diving Bank-Angle Turn.

Of particular significance is the lesson from the RAH-66 Comanche helicopter development.
This vehicle was found to reach a steady condition during aggressive diving turns (Fig. 1);
also, sce next section for details on steady and unsteady conditions Although this STIR work
addresses unsteady conditions, the stability issue that plagued the Comanche development

merits some elaboration.

Therein, inadequate stability margin or blade damping was discovered during flight tests of
diving turns. Specifically, the vehicle was found to be vulnerable to air resonance instabilify
in which the blade regressing lag mode (RLM) frequency coalesced with the fuselage roll
mode frequency, and in turn the blade inplane damping sharply declined with increasing
thrust level and was later augmented by an active feedback controller (Ref 10)
The state-of-the-art predict.ion codes failed to predict the decline; in fact, conventional
wisdom has it that stability is not an issue during maneuvers. This failure demonstrated that
stability during aggressive maneuvers is a crucially important and yet unresolved issue in the

Army’s development of air vehicles for combat missions.




3. Steady and Unsteady Conditions

During forward flight, it is not difficult to distinguish between steady and unsteady

conditions and in turn to conceptualize pertuibation from a periodic orbit as required by

Floquet theory. By contrast, “the distinction between the steady and unsteady maneuvers is

sometimes difficult to make” (Ref 4); after all, maneuvers do involve some form of

accelerated flight.
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For a better appreciation of this subtle distinction, it is instructive to study Figs. 2 and 3,
which show load-factor time histories for the level bank-angle and diving bank-angle turns
from the UH-60A airloads program (Ref 4). As seen from Fig. 2a (counter 8539), the
maximum load factor n, is 1 52¢g and the horizontal dotted line is 98% of the maximum or
1.49g The maneuver point duration Iq is defined for the petiod during which the load factor
1 exceeds the 98% level, that is, within 2% of maximum value; this dutation is taken as a
measure of the steadiness of the maneuver (Ref 4). While the maneuver point duration
Iq= 1.1 seconds in Fig 2a, Ty=4 2 seconds in Fig. 2b, about 4 times longer Qualitatively,
the same type of variation is depicted by the diving}turn case in Fig 3a (counter 11668)' and
in Fig 3b (counter 11683). Although the identification of I¢ and the corresponding measure
of maneuver steadiness are arbitrary, Figs. 2 and 3 do show that these maneuvers basically
fall into two categories: In the first, the maneuvers do exhibit steady conditions; that is, the
maneuver point duration Ty contains multiple consecutive rotor revolutions, which can be
considered a steady (periodic) condition from Floquet theory stand point. In the second, such
a steady condition is not exhibited, and the Floquet theory is no longer applicable or its

applicability is nebulous at best

4, Background to FTLE

The Lyapunov exponent is the most fundamental measure or metric of stability. Its
computation requires time averaging of the response vector over a long time (Refs 7-9)
In particular, it reduces to the real part of the Floquet exponent for the special case of a
periodic orbit The theoretical basis, computation and application of FTLE represent an

emerging and active area of research (Refs. 9, 11, 12). FILE is the finite-time version of the




Lyapunov exponent, and it provides a rigorous means of quantifying the finite-time or local
stability for that duration of the orbit and for that initial state In the next section, stability
formulation based on FTLE is presented with a passing reference to the Lyapunov exponent,
in particular, to the connection between FTLE and the Lyapunov exponent. As a background
to FILE, however, a brief account of the widely used generalized Floquet approach is
included in the sequel (Ref. 5) Like the generalized Floquet approach, the FTLE formulation

is not restricted to state-space modeling.

4.1 Generalized Floquet Approach

Classical Floquet theory applies to state-space models. For a model, say with M states, it is
required to perturb or excite each of the M states about a periodic response, one state at a
time, to generate the M x M perturbation mattix P at some starting time, say at t = to. It also
requires that each of the corresponding M responses are measured ’at the end of one period,
say at t =t + 2@, to generate the M x M response mattix R. The Floquet transition matrix
| (FTM) connects P and R:
[R]MxM =[FTM]M_KM [P]MxM L (1)

The generalized Floquet theory provides an analytical basis to predict the stability of models
without a state-space representation and with numerically or experimentally generated
response histories. Algorithmically; it also connects P and R, but it permits perturbation of

an arbitrary number of states and generalizes the above equation (Refs 1, 2, 5):

[R]ixs =[FIM] ; [Py, s @)

The number of rows I and the number of columns J depend upoﬁ the number of states

pertutbed, the number of additional periods and time delays used in generating the




time-shifted or pseudo states such as x, (t+ At)and x, (t+2At), where x,(t) is a state and
At is the time delay or time shift. Now, the FIM is generated by the singular value
decompeosition of P and R, and then by P*, the generalized inverse of P. That is, the FTM is

approximated in the least-squares sense Stated explicitly,

[Frm]=[r][p]”

5. FTLE Approach

While the Floquet exponents describes the stability of a periodic response, the infinite-time
or global Lyapunov exponent is a generalization of the Floquet exponent in that it describes
the stability of an orbit that is not constrained to be periodic. Similarly, FTILE describes
stability of an orbit that does not last long enough to reach a steady state, and thus it provides
the basis for the fiamework to calculate the stability This framework involves three
sequential computational blocks: 1) constructing a pseudo-state space; ii) generating a seties
of partial derivative or Jacobian matrices and in twin forming the positive symmetric
Oseledec matrix, and iii) diagonalizing this Oseledec matrix by the recursive

QR decomposition (Ref. 9)

5.1 Pseudo-state Space

The pseudo-state space construction begins with N-point time series of the response:
{X1, X2, X3. . Xi... XN}, Whete X; is a scalar measurement at discrete time t = t;. Now it is
required to introduce four important parameters:

At = data sampling interval (assumed constant} = tiy- t;




m = embedding dimension
T = time lag = (integer) At
I = delay expressed in number of data points =t / At

With these ingredients, an MXm matrix [X] with M vectors is generated:

X = [XDXHJ"'“" X1+(m—1)1]

X,y = [X'j’XZJ s Xy

Xu= [XM>XM+15“‘> XM+(m-—1}J]
where X; is the reconstructed state of the system att=t;
It is verified that N = M + (m-1) J The local Lyapunov exponents are computed in the

embedded space of these M vectors

5.2 Toward Computing FILE

Say m, Lyapunov exponents ate computed. With k representing the starting time step
t = t; = k, the stipulation is that the response vector X(k) is governed by the mapping
(Refs. 2, 8, 9%

X (k) - X(k+1)=F(X(k))

Roughly speaking, stability shows how perturbation AX(k) to X(k) grows or decays with
time. Accordingly, to connect A(k) with A(k+1), set

X(k+1)+A(k+1)=F(X(k)+A(k))
= F(X (k) + DF (X (x))-A(K)

In other words,

A(k+1)=DE(X(k)) A(k)




where DF(X(k)) represents the m, X m, Jacobian or partial derivative matrix such that

DF(X).. = 3 ;0 1=1,2,. ,myandj=1.2,.,
] Mo
It is instructive to observe that when X (k+2n} =X (k), the stability is governed by Floquet

- theory  After L time steps, it is verified that

A(k+L)=DEF{X(k+L~1))-DF(X(k+L-2)) DF(X(k)) A(k)

Li~ 10N A fLN T (4)
=DF* (X(K)) A(K)
By definition, the positive symmetric Oseledec matrix after L time steps is given by
08(X,L)=[DF* (X)] [DF* (x)]' J— ®)

The matrix has real eigenvalues; their logarithms are called the finite-time Lyapunov
exponents and are represented by A; (x, L), A1 (x, L) being the largest Although the Oseledec
 matrix is ill-conditioned, the recursive QR decomposition provides a means of computing the
eigenvalues. It is instructive to observe that

lmdGol)=h, AR>Sk, e ©)

where the logarithm of A; is the conventional Lyapunov exponent. For regular motion, &, < 0
and for chaos, A; > 0. Hereafter, the treatment is restricted to stable regular motion and to the

largest FILE, which is simply designated as A;; (< 0)

5.3 FTLE as a Stability Measure

Stability means the exponential rate of growth or decay with time of two neighboring

trajectories; this is shown schematically in Fig 4. Thetein, & (t) represents the separatioh




between the trajectory x (t) with initial state x, and the perturbed trajectory x (t) + § (t) with

initial state X, + 8,. After L time steps, the separation & (t) can be represented as
b ol -Jo e N

With L— o0, A1 — M, and for a periodic trajectory with petiod T,
O T ®
T

where y, is the largest characteristic multiplier or the largest eigenvalue of the FIM, given
by Eq. (3) For a stable system, it is instructive to observe that -\, (> 0) provides the stability

margin of the least stable mode.

x{1) A
Xe
X(t)+3()
0 »

Fig 4 Schematic of Separation between two Neighboring Trajectories

For rotorcraft systems designed for aggressive maneuvers, the stability issue often centers on
how stable is the least stable mode, that is, on the adequacy of the stability margin from
handling qualities perspective. Thus, what is required is a means of quantifying the stability
margin. Recall that -&; (> 0) quantifies the stability margin for the least stable mode; it is
evaluated from Floquet theory for a periodic tréj ectory and from Lyapunov-exponent method

for a trajectory that is not constrained to be periodic. Furthermore, Ajp— A; with L— oo;

10




that is, Jr serves as the finite-time version of A; All this points to the feasibility of
using -Ayp (> 0) as a sensible means of quantifying the stability margin of the least stable

mode for aggressive maneuvers of short duration

6. Conclusions

The mvestigation toward developing a fiamework to calculate helicopter stability during
aggressive, short-duration maneuvers has been presented This investigation exploits the
largest finite time Lyapunov exponent as a measure of stability margin, and it represents the
first attempt toward such a development fiom first principles It is still in an exploratory
stage The next section gives an account of its continuation under a three-year ARO grant

" (May 1, 2007 - April 30, 2010)

7. Continuing Study

Two major objectives of the continuing study are 1) to further refine the analytical basis of
the developed framework to calculate the stability and 2) to investigate the computational

issues.

The computation of the largest finite time Lyapunov exponent Ajy represents an active
research area and is computationally demanding. One reason is that the Oseledec matrix
given by Eq. (5) is ill-conditioned. Accordingly, the recursive QR decomposition will be

- investigated to reliably compute A;; (Ref. 9)

11




~ Finally, the database from the UH-60 aitloads program will be used to identify aggressive
maneuvers of short duration and then to calculate the stability margins for these maneuvers.
This should bring out the strengths and weaknesses of the framework to calculate the stability -
of aggressive, short-duration maneuvers on the basis of the largest finite-time Lyapunov

exponent
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